99 research outputs found

    Mineral analysis reveals extreme manganese concentrations in wild harvested and commercially available edible termites

    Get PDF
    Open Access Journal; Published online: 09 April 2020Termites are widely used as a food resource, particularly in Africa and Asia. Markets for insects as food are also expanding worldwide. To inform the development of insect-based foods, we analysed selected minerals (Fe-Mn-Zn-Cu-Mg) in wild-harvested and commercially available termites. Mineral values were compared to selected commercially available insects. Alate termites, of the genera Macrotermes and Odontotermes, showed remarkably high manganese (Mn) content (292–515 mg/100 gdw), roughly 50–100 times the concentrations detected in other insects. Other mineral elements occur at moderate concentrations in all insects examined. On further examination, the Mn is located primarily in the abdomens of the Macrotermes subhyalinus; with scanning electron microscopy revealing small spherical structures highly enriched for Mn. We identify the fungus comb, of Macrotermes subhyanus, as a potential biological source of the high Mn concentrations. Consuming even small quantities of termite alates could exceed current upper recommended intakes for Mn in both adults and children. Given the widespread use of termites as food, a better understanding the sources, distribution and bio-availability of these high Mn concentrations in termite alates is needed

    A regulated deficit irrigation strategy for hedgerow olive orchards with high plant density

    Get PDF
    Background & Aims There is not a consensus on the best irrigation approach for super-high density (SHD) olive orchards. Our aim was to design and test a regulated deficit irrigation (RDI) strategy for a sustainable balance between water saving, tree vigour and oil production. Methods We tested our RDI strategy for 3 years in an ‘Arbequina’ orchard with 1,667 trees ha−1. Two levels of irrigation reduction were applied, 60RDI and 30RDI, scaled to replacing 60 % and 30 %, respectively, of the of irrigation needs (IN). We also had a full irrigation (FI) treatment as control, with IN totalling 4,701 m3 ha−1 Results The 30RDI treatment showed the best balance between water saving, tree vigour and oil production. With a yearly irrigation amount (IA) of 1,366 m3 ha−1, which meant 72 % water saving as compared to FI, the reduction in oil yield was 26 % only. Conclusions Our results, together with recent knowledge on the effect of water stress on fruit development, allowed us to suggest a potentially improved RDI strategy for which a total IA of ca. 2,100 m3 ha−1 was calculated. Both some management details and the benefits of this suggested RDI strategy are still to be tested

    Establishing a Reference Baseline for Midday Stem Water Potential in Olive and Its Use for Plant-Based Irrigation Management

    Get PDF
    12 páginas.- 7 figuras.- 4 tablas.- 55 referencias.-Midday stem water potential (SWP) is rapidly becoming adopted as a standard tool for plant-based irrigation management in many woody perennial crops. A reference or “baseline” SWP has been used in some crops (almond, prune, grape, and walnut) to account for the climatic influence of air vapor pressure deficit (VPD) on SWP under non-limiting soil moisture conditions. The baseline can be determined empirically for field trees maintained under such non-limiting conditions, but such conditions are difficult to achieve for an entire season. We present the results of an alternative survey-based approach, using a large set of SWP and VPD data collected over multiple years, from irrigation experiments in olive orchards located in multiple countries [Spain, United States (California), Italy, and Argentina]. The relation of SWP to midday VPD across the entire data set was consistent with an upper limit SWP which declined with VPD, with the upper limit being similar to that found in Prunus. A best fit linear regression estimate for this upper limit (baseline) was found by selecting the maximum R2 and minimum probability for various upper fractions of the SWP/VPD relation. In addition to being surprisingly similar to the Prunus baseline, the olive baseline was also similar (within 0.1 MPa) to a recently published mechanistic olive soil-plant-atmosphere-continuum (SPAC) model for “super high density” orchard systems. Despite similarities in the baseline, the overall physiological range of SWP exhibited by olive extends to about −8 MPa, compared to about −4 MPa for economically producing almond. This may indicate that, despite species differences in physiological responses to low water availability (drought), there may be convergent adaptations/acclimations across species to high levels of water availability. Similar to its use in other crops, the olive baseline will enable more accurate and reproducible plant-based irrigation management for both full and deficit irrigation practices, and we present tentative SWP guidelines for this purpose. Copyright © 2021 Shackel, Moriana, Marino, Corell, Pérez-López, Martin-Palomo, Caruso, Marra, Agüero Alcaras, Milliron, Rosecrance, Fulton and Searles.In addition to the authors institutions, this research was supported by the Olive Oil Commission of California and the California Olive Committee.Peer reviewe

    Protocolo transdiagnóstico PsicAP de entrenamiento cognitivo-conductual en grupo para trastornos emocionales

    Get PDF
    Anxiety disorders and depression are highly prevalent today. The PsicAP clinical trial showed that adding 7 sessions of group cognitive-behavioural training with a transdiagnostic approach to the usual treatment of emotional disorders in adult primary care patients increased efficacy and cost-effectiveness in reducing symptom levels, reduced disability and improved quality of life. In this work, these 7 sessions of the PsicAP protocol of transdiagnostic treatment are described, aimed at intervening on the factors common to the different disorders: cognitive distortions and emotional regulation strategies. It is an intervention based on learning through psychoeducation, cognitive restructuring, relaxation, behavioural techniques and relapse prevention. It concludes by arguing about the usefulness of this protocol to reduce the gap between research and clinical practice, something necessary in today's societyLos trastornos de ansiedad y la depresión son altamente prevalentes en la sociedad actual. El ensayo clínico PsicAP demostró que añadir 7 sesiones de entrenamiento cognitivo-conductual en grupo con enfoque transdiagnóstico al tratamiento habitual de trastornos emocionales en pacientes adultos de atención primaria aumentó la eficacia y coste-efectividad para reducir los niveles de síntomas, redujo la discapacidad y mejoró la calidad de vida. En este trabajo se describen esas 7 sesiones del protocolo PsicAP de tratamiento transdiagnóstico, dirigido a la intervención sobre los factores comunes a los distintos trastornos: las distorsiones cognitivas y las estrategias de regulación emocional. Se trata de una intervención basada en el aprendizaje mediante psicoeducación, reestructuración cognitiva, relajación, técnicas conductuales y prevención de recaídas. Se concluye argumentando sobre la utilidad de este protocolo para reducir la brecha entre investigación y práctica clínica, algo necesario en la sociedad actua

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0\u20135 and 5\u201315 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10\ub0C (mean = 3.0 \ub1 2.1\ub0C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 \ub1 2.3\ub0C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler ( 120.7 \ub1 2.3\ub0C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore